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ANALYSIS OF PARTLY W R I N K U D  MEMBRANES 

By Manuel Stein and John M. Hedgepeth 

SUMMARY 

A theory is derived to predict the stresses and deformations of 
stretched-membrane structural components for loads under which part of 
the membrane wrinkles. Rather than studying in detail the deformations 
in the wrinkled region, the present theory studies average displacements 
of the wrinkled material. Specific solutions of problems in flat and 
curved membranes are presented. The results of these solutions show 
that membrane structures retain much of their stiffness at loads sub- 
stantially above the load at which wrinkling first occurs. 

INTRODUCTION 

Lightweight structures having stretched-membrane components have 
many potential applications in space. A membrane by definition has no 
bending stiffness and can carry no compressive stress. Accordingly, 
when the stress drops to zero, wrinkling may occur over part or all of 
the membrane. In order to utilize membrane structwal components effi- 
ciently, the designer must know the properties of such components in 
the range of loading from the onset of wrinkling to final collapse as 
well as in the range for which the membrane is unwrinkled. 

Based on the premise that a membrane has no bending stiffness and, 
hence, can carry no compressive stress, a theory is derived herein to 
predict the stresses and deformations of stretched-membrane structural 
components, for loads under which part of the membrane wrinkles. 
tions are presented for several illustrative problems in flat and 
curved membranes, as follows: 

Solu- 

(1) In-plane bending of a stretched rectan,dar membrane 

(2) Bending of a pressurized membrane cylinder 

(3)  Rotation of a hub in a stretched infinite membrane 

Stresses and deformations are presented in equation form for both the 
wrinkled and unwrinkled regions. The results of the three problems 
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considered a r e  presented i n  nondimensional p lo t s  which show tha t  the  
extent of t he  wrinkled region i s  much d i f f e ren t  from the  compression 
region calculated from the  usual theory of e l a s t i c i t y .  
tant ly? the p lo t s  ind ica te  tha t  considerable s t i f f n e s s  of the membrane 
s t ructure  i s  retained a t  loads subs t an t i a l ly  above the load a t  which 
wrinkling f i rs t  occurs. 

More impor- 

SYMBOLS 

radius of hub 

extent of wrinkled region 

a r b i t r a r y  functions 

width of rectangular membrane 

in t e rna l  pressure 

radius of cylinder; radial coordinate 

thickness of membrane 

displacements i n  x- and y-directions o r  r- and &direc t ions  

radial displacement of cylinder w a l l ,  pos i t ive  outward 

rectangular coordinates 

Young's modulus f o r  material 

bending moment; torque 

load 

radial extent  of wrinkled region 

constant t e n s i l e  stress 

. . . constants 

constant t e n s i l e  force per un i t  length 

U angle determining d i rec t ion  of wrinkle 
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p = t a n a  

e 
K 

h 

angular coordinate 

curvature 

function determining strain in direction perpendicular to 
wrinkles 

Poisson’s ratio f o r  material 

rotation of hub 

principal strains 

direct strains in rectangular-coordinate directions 

shear strain in rectangular-coordinate directions 

direct strains in polar-coordinate directions 

shear strain in polar-coordinate directions 

principal stresses 

direct stresses in rectangular-coordinate directions 

shear stress in rectangular-coordinate directions 

direct stresses in polar-coordinate directions 

shear stress in polar-coordinate directions 

THEORY FOR WRINKIXD MEMBRANES 

A theory is developed in this section for the structural behavior 
of wrinkled flat membranes. 
isotropic, has no bending stiffness, and cannot carry compressive stress. 

The membrane considered herein is elastic, 
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The present theory studies average strains and displacements of the 
wrinkled material rather than detailed deformations of each wrinkle. 
In terms of the equations given, the present theory is limited in the 
sense that average strains must be small compared with unity. 

Stresses 

To study membrane wrinkling, it is convenient to look first at the 
principal stresses. If both principal stresses are positive, the mem- 
brane is in tension and thus w i l l  not wrinkle. If both principal 
stresses are zero, the membrane is unloaded and thus will not wrinkle. 
Evidently in a wrinkled membrane one principal stress must be zero and 
the other nonzero. The nonzero principal stress may be assumed to act 
along the wrinkle. For a flat membrane the principal stresses are - 
given in terms of the stresses in 

+ - ox + by 
5 - 2 

rectangular coordinates by 

ux + '5y 
2 a2 = 

From these equations the condition that a principal stress vanish may 
be obtained as follows 

2 
XY UxUy = T 

where, since compressive stresses are prohibited, both ox and uy 
must be pasitive. 
region. If the nonzero principal stress is a1 and if the corresponding 
principal direction is at an angle a to the x-axis, then, from the 
well-known relations between the stresses in the rectangular-coordinate 
directions and the principal stresses 

Equation (1) must be satisfied throughout a wrinkled 

2 ux = ul cos a 

2 a = a1 sin a Y 

T = al sin a cos a XY 

Of course, equations (2) satisfy equation (1). 
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The equilibrium equations 

( 3 )  

together with condition (1) form a set of three equations in the three 
unknown stresses. Thus the stresses in a wrinkled region, unlike those 
in an unwrinkled region, can be determined independently of strain 
compatibility. 

Strains and Displacements 

Corresponding to the nonzero principal stress al, the principal 
strain E, parallel to the wrinkle at each point would be expected to 

I 

be 
01 €1 = - E 

Because of the "over contraction" behavior of a wrinkled membrane 
direction normal to the wrinkles, a "variable Poisson's ratio" h 
defined so that 

01 €2 = -h - 
E 

The quantity h is an unknown function of the independent varia- 
bles and allows an average measure to be made of the €2 strain which 
would otherwise be either indeterminate or dependent on detailed large- 
deflection analysis. 
borders on an unwrinkled region, h must equal Poisson's ratio for the 
material. 

At points in a membrane where a wrinkled region 

From the relations between the strains in the rectangular-coordinate 
directions and the principal strains 

= 2(1 + A )  - 
7xY Txy E i 
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The preceding equations, through the quantity 
strains in rectangular coordinates. 

h, define the average 

Average displacements are defined through the usual strain dis- 
placement relations 

from which follows the equation for compatibility of the strains 

a% a2€ a2y,y 2++=- 
ay2 ax ax ay 

In terms of the stresses for the wrinkled region, the conpatibility 
relation becomes 

Thus, once the stresses have been determined as discussed in the pre- 
vious section, the quantity A may be determined from the compatibility 
equation ( 9 )  and the strains and displacements from equations (6) 
and (7),  respectively. 

STRESS FIELDS IN WRINKLED MEMBRANES 

Before going to solutions of specific problems, it is desirable to 
investigate, in general, the stress equations of the theory just devel- 
oped to see what general facts can be deduced about the behavior of 
wrinkled-membrane fields. A solution is obtained for the stresses in 
a wrinkled-membrane field by solving the equilibrium equations (3)  and 
equations (2) which replace equation (1) as the condition for the van- 
ishing of a principal stress. 

Equations (2) and ( 3 )  are five equations in five unknowns, and by 
substitution from equations (2) into equations (3) they can be reduced 
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to two equations in two unknowns, any two of the five. It is convenient 
to choose as unknowns ux and tan a and to seek a solution for x 
and y in terms of these unknowns. Thus, with P = tan a, let 

i x = q u x ,  P)  

Y = Y(O,,P) 

Differentiation of these equations with respect to x leads to 

The following equations result from solution of the preceding equations 
for au,/ax and &/ax 

ax ay a ax 
ab, ap aux ap 

where J = - - - -. Similarly, differentiation with respect 

to y results in 

Now, since uy = axp2 and T~~ = a,P according to equations ( 2 ) ,  

the equilibrium equations (3)  can be written 



a 

By integration the second equation becomes 

where f(a) is an arbitrary function of p .  This equation is independ- 
ent of ux and therefore defines a ux coordinate curve, or since 
u1 = ax( l  + p 2 )  it may be considered to be a ul coordinate curve. 
Also, in the x,y plaxe, equation (12) is the equation of a family of 
straight lines at an angle a to the x-axis, and therefore a1 acts 
along these straight lines. Thus a1 trajectories are straight lines 
and since a1 must always act parallel to a wrinkle, it follows that 
in a flat stretched membrane, the wrinkles must be straight. 

Differentiating equation (12) with respect to p and then sub- 
tracting the resulting expression from the first of equilibrium equa- 
tions (11) gives 

ax x + fqp) + ux - = 0 
a a X  

or  

a - (xux) = - f ' ( p )  
a u X  

wh,:h by integration -cads to the general solut,m of the equi 
equations 

x=-- g(p) fqp) 
OX 

ibrium 

where g(p) is an arbitrary function of p .  Thus equations (13) 
define the stress field of any wrinkled membrane. However, their 
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d i r e c t  appl icat ion t o  problems where conditions a r e  specif ied along 
given boundaries i n  the  x,y plane may not be prac t ica l ,  and a more con- 
ventional a t t ack  on each spec i f ic  problem may be more appropriate.  

EXAMPLE SOLUTIONS 

Solutions t o  three  problems a r e  presented i n  t h i s  sect ion by means 
of the  theory j u s t  derived. I n  the problems solved, f i r s t  the unwrinkled- 
region and then the wrinkled-region s t resses  and deformations a re  deter-  
mined except for ce r t a in  constants or  functions; f i na l ly ,  cont inui ty  of 
forces  and deformations across the boundary between wrinkled and unwrin- 
kled regions determines the  values of these constants or functions.  

In-Plane Bending of a Stretched Rectangular Membrane 

Consider a rectangular membrane of thickness t, as indicated i n  
the  following sketch, 

4 
b 

t 0 t - t  Nv 
X 

J - 
which i s  subjected t o  load P, moment M, and uniform tension Ny as 
shown. Under ce r t a in  combinations of t h i s  loading the membrane w i l l  
wrinkle along the  lower edge. The l i n e  y = b defines the  edge of the  
wrinkled region. Stresses  and s t r a i n s  w i l l  be independent of x. 

The load and moment a r e  r e l a t ed  t o  the a, stresses by 

P = tkh a, dy 
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With the stresses and strains functions only of y the equilibrium 
equations (3) and the compatibility equation (8) become 

I 
I 

Unwrinkled region.- The usual form of the strain-stress relations 
holds in the unwrinkled region - that is, 

. 
E x - - - V -  - OY 

E E 

(JX 
Y E  E E = a y -  v -  

7x7 7XY = 2(1 + v) -$ 

From equations (15) and (16) and from the condition of zero shear stress 
applied to the membrane, the form of the stresses may be determined as 

1 uX = E ( K ~  + C1) 
- 

(J = -  NY 
Y t  

where K and C1 are constants which will be ,ztermined. 

The displacements may now be determined from equations (7) and (16) 
- .  
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where C2 i s  a constant and the  condition t h a t  u = 0 a t  x = 0 has 
been s a t i s f i e d .  

Wrinkled region.- Evidently f o r  t h i s  problem the  wrinkles will be 
i n  the  y-direction, t he  stress along the  wrinkles 

= 0. 

cry w i l l  be constant, - 
These values s a t i s f y  equation (1) and the  

= k NY CJ = -  and 
Y t ’  

f i rs t  two of equations (15). 

Therefore, from equations ( 6 ) ,  

€x = -h - E t  
I - 

E - - -  NY 1 
Y E t  

where h i s  a function of y. From t h e  t h i r d  of equations (15), 

therefore,  

Y A = (v - cs> i; + c3 

where C3 i s  an a rb i t r a ry  constant and t h e  requirement t h a t  h = v 
a t  y = b has been met. 

The displacements u and v can now be found from equations (7) 
and ( 1 9 ) ;  thus, 

where u and v have been made t o  vanish a t  the  or ig in  as a point of 
reference. 
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Continuity of u and v displacements at y = b leads to 

From equations (14) with ux = 0 in the interval 0 < y < b 

and finally 

The overall curvature of the membrane can be identified as the 

= - K  constant K since - so that equation (24) may be considered a2v 
ax2 

to relate moment to curvature. A plot of this relationship is presented 
in figure 1. Wrinkling starts at the monent M = E (according to equa- 

tions (23) and (24) with b = 0). From these equations with = 1, the 
6 

maximum moment attainable is three times the wrinkling moment, and, as 
may be seen from figure 1, the membrane has considerable stiffness for 
moments up to about twice the wrinkling moment. 

The extent of the wrinkled region b/h for the membrane is also 
presented in figure 1 and is compared in figure 2 with the corresponding 
extent of the region of compressive stress in an elastic plate as 
obtai-ned by conventional elasticity theory. Except for a small region 
near the wrinkling load, the extent of the regions are quite different. 
The membrane is completely wrinkled at the finite maximum moment Ph/2, 
whereas only half of the plate is in conpression when it is subject to 
an infinite moment. 



Bending of a Pressurized Membrane Cylinder 

The problem of the  bending of a pressurized membrane cylinder i s  
taken up a t  t h i s  point because of i t s  s imi la r i ty  i n  concept with the  
preceding problem. Tnis cylinder problem requires the  extension of t he  
wrinkled-flat-membrane theory already presented t o  the  case of a cylin- 
d r i c a l  curved membrane. This extension i s  made as the  problem i s  
developed. 

Consider a membrane cylinder of radius r and thickness t sub- 
j e c t  t o  an in t e rna l  pressure p, an a x i a l  load P, and bending moment M 
with coordinates as indicated i n  the  following sketch: 

c- u L ) - * p  ------ - - - - - - -  

X 

The loadings P and M may be defined by 

P = tso,,, ox dy 

23[r 
M = - r tS ,  ox cos i y d y  r 

( 2 5 )  

It i s  postulated t h a t  wrinkling occurs i n  the  region from y = -b t o  
y = b. This behavior may be observed i n  very t h i n  cylinders as i l l u s -  
t r a t e d  i n  f igure  3 which shows a 0.0005-inch-thick 5 inch- rad ius  Mylar 
cylinder subject  t o  the  kind of loading considered i n  t h i s  problem. 
Again, as i n  t h e  previous problem, s t resses  and s t r a i n s  w i l l  be inde- 
pendent of x. No account w i l l  be taken o f  change i n  pressure due t o  
other  loadings. 

I n  addi t ion t o  the  two equilibrium equations ( 3 ) ,  which remain 
unchanged, a t h i r d  equilibrium equation must be considered f o r  t h i s  
curved-membrane problem. 
membrane i s  the  nonlinear equation: 

The appropriate equation f o r  a cy l indr ica l  

where w i s  the  normal displacement, posi t ive outward. 
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Corresponding strain-displacement relations are 

so that the compatibility equation is 

For the present problem the strains 
conpatibility relation is simply 

are functions only of y; thus the 

From this expression it can be deduced that w is prabolic in x. It 
follows from equations (27) that v is also parabolic in x, and u is 
linear in x. Also v and w are symmetric about x = 0 and u is 
antisymmetric. Therefore, 

u = XUl(Y) 

It would be expected that the 
term so that 

x2w2(y) term would be the simple bending 

w2(y) = $ cos y Y 

where 
action of the bending moment 

K may be interpreted as the curvature of the cylinder under the 
M. Since there is no shear stress applied, 
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the first of the equilibrium equations (3) yields T = 0 and, hence, XY 
= 0. Thus, from equations (27), (29), and (3l), 

7xY 

( 3 2 )  v2(y) = - K sin - Y 
r 

The strains (eqs. ( 2 7 ) )  may now be written 

EX = - K r  COS 7 Y + c1 

YXY = 0 

There has been no specialization to the wrinkled o r  unwrinkled regions. 

Unwrinkled region.- In the unwrinkled region the stress-strain 
relations (16) apply. 
strains (eqs. (9)) as: 

The stresses can be written from the determined 

( 3 5 )  
V K r  cos + v c 1  I t  E 

1 - v  r u =  
2 r 

I 

J I- = o  XY 

In order to satisfy the second of the equilibrium equations (3), 
must equal a constant, say Ry/t, and therefore ax can be written 

cJy 

- 
cos Y + C1) + v NY - 

t 
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From 

W l ( Y )  + 1" - vIcr cos Y + 2 r 
- - 

1 -  v NY - (37) 

and from t h e  t h i r d  equilibrium equation (eq.  (26)) ,  v,(y) and wl(y) 
may be determined. However, it should be noted tha t ,  within the  range 
of va l id i ty  of the  theory, the  def lect ion of t he  "neutral  axis" of the  
cylinder, K X ~ / ~ ,  must be everywhere negl igibly s m a l l  compared with the  
radius. Equation (26) becomes, a f t e r  subs t i tu t ion  f o r  the s t r e s ses  and 
the deflection, 

- 
Y - X2 2 - { [  E t  ( -Icr cos y + C1) + V R ~ K  cos + 8 Y l  w"(y) - NyK 2 

Since K X * / ~  i s  negl igible  compare& with r, it follows t h a t  the  l as t  
term on the  left-hand s ide of t he  preceding equation may be neglected 
i n  comparison with the f i r s t  term. 
d i rec t ly  f o r  wl(y); thus, 

Equation (38) may then be solved 

Et c1 + v K r  cos + c2 + ( %  ) (39) 

where the constants of integrat ion have been adjusted f o r  
symmetric about y = fir. 

w t o  be 

From equation ( 37) vl(y) can be found now t h a t  wl( y )  i s  known. 
Hence, 



where the condition that v is antisymmetric about y = Jrr has been 
used to determine the constant of integration. 

Wrinkled region.- In the wrinkled region uX = 0 and cry is con- 
stant and A replaces v in the stress-strain law, so that by com- 
parison with equation (36) 

Y A = = Icr cos - - Et( NY r ‘1) 

For A to equal v at y = fb 

Froa equation 
kled region 

where one constant 
is symmetric aSout 

c3 

b vEy C1 = 6r cos - - - 
r Et 

(26) with the same term neglected as for the unwrin- 

of integration has been set equal to zero because w 
y = 0. In order that w be continuous at y = fb, 

(I+ - $ +r-- Et tc’r) (b - fir);) 
2 2r + c;! + - 

2NY 
(44) 

Ny thus, from the In the wrinkled region - -* relation of - 
Et’ 

equations (34) vl(y) can be found now that wl(y) is known: 

where the constant of integration has been dropped since 
symmetric about y = 0. For v to be continuous at y = fb, 

v is anti- 
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The constants C 2  and C 3  may now be determined from the two re la t ions  
between them j u s t  given (eqs.  (44) and (46 ) ) .  

The ax ia l  applied load P and the  applied bending moment M can 
be determined according t o  equations ( 2 5 )  from the  s t r e s ses  independently 
of the  displacements (note t h a t  any end pressure load must be included 
i n  P):  

(47) 

M = E t r 3 ~ ( f l  - r 2  + - s i n  - ") r 1 

The equations f o r  P 

A nondimensional 

and M thus determine b and K .  

p lo t  of the  moment-curvature re la t ionship  i s  pre- 
sented i n  f igure 4.  A s  i n  t he  previous problem, wrinkling does not 
appreciably decrease s t i f f n e s s  u n t i l  a major portion of t he  cylinder 
has wrinkled. The cylinder will support a moment equal t o  twice the  
wrinkling moment. 

The extent of the  wrinkled region i s  a l so  presented i n  f igure  4 
and i s  compared i n  f igure 5 with the  extent of t he  compression region 
i n  a cy l indr ica l  s h e l l  subject t o  the  same loading. 
region near the wrinkling load the  extent  of the regions a r e  very dif-  
ferent.  
moxent, whereas the s h e l l  i s  i n  compression f o r  only half  i t s  circum- 
ference as the  moment approaches i n f i n i t y .  

Except f o r  a s m a l l  

The membrane i s  completely wrinkled a t  i t s  ( f i n i t e )  maximum 

Rotation of a Hub i n  a Stretched I n f i n i t e  Membrane 

A hub of radius a i s  attached t o  a membrane s t re tched i n  uniform 
s t ress  T, and the  hub i s  ro ta ted  by a torque M. A s  the torque i s  



increased, it is postulated that wrinkles begin to form symmetrically 
around the hub out to some radius R; the region grows as the torque 
increases. Stresses, strains, and displacements are radially symmetric. 
A photograph of the symmetrical wrinkle pattern due to rotation of a 
hub centrally located in a circular stretched membrane is shown in 
figure 6. 

For radially symmetric stresses the equilibrium equations are 
. 

From integration of the second equilibrium equation 

where the constant has been adjusted to satisfy the torque shear stress 
relationship 

M = - t L  2n Trer 2 de 

Strain-displacement relations for axisymmetric deformations are 

Thus, compatibility of the strains requires that 

Unwrinkled region.- In the unwrinkled outer region r > R the con- 
ventional strain-stress law holds 
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The first equilibrium equation provides a relation between 
and ae. 
expressions f o r  the direct strains (53) into the compatibility equa- 
tion ( 5 2 ) .  Elimination of ue between these relations gives 

ur 
Another such relation is obtained by substitution of the 

so that 

a e = - - + T  C1 
2 r 

where C1 is a constant and the conditions that ur and ae approach 

the constant T as r + w  have been satisfied. 

Displacements that correspond to these stresses may be obtained 
from equations (53) and (51): 

for which the condition was used that v must vanish as r -+a. 

Wrinkled region.- In the inner region a < r < R, the counterpart 
of the condition for zero principal stress (eq. (1)) in polar coordinates 
is 
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which gives 

M2 1 
O 9  =ma, 

The first of the equilibrium equations (49) may now be written in terms 
of or alone 

This equation has the solution 

uI‘ = ii(cz - M2 
4rr2t2r2 

From equation (58) 

For crr to be continuous at r = R 

The equations corresponding to the strain-stress relations (6) are 

E 

7re 

where A is an unknown function of r. From the compatibility equa- 
tion ( 5 2 )  and equilibrium equations (49) 
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o r  

where the constant C is determined so that h = v at r = R, that is, 3 

- 
1 1 + -  1 log (4n2t2C2R2 

2 M2 
c 3 = v - -  

4rr2t2C2R2 

According to the strain-deformation equations (51) the deformations 
may be written with M positive: 

The remaining constants are determined by the conditions that the 
and v displacements be continuous at r = R; thus 

u 

1 1 C4'-l+ 

At the hub of radius a the displacement u is determined on the 
basis that the membrane is stretehed before attaching the hub. The 



(' - 'ITa, which yields the following u(a) = E boundary condition is then 
transcendental equation: 

1 + 
2 2  2 4n t c2a 

- 1  - 1  
2 

(1 - v)Ta 
E 

M2 

1 1 
- 1  + 

2 2  2 
(1 - v)Ta 

E 2 2  2 4n t c2a 4n t c2a 
n - 1  n - 1  

(69 )  

from which the extent R of the wrinkled region may be found. 

The tangential displacement at the edge of the hub divided by the 
radius of the hub is the rotation of the hub cp.  A nondimensional plot 
of the torque-rotation relationship is presented in figure 7. 
seen that the wrinkled stretched membrane has considerable stiffness in 
resisting this kind of loading, and the torque may increase indefinitely. 
The extent of the wrinkled region R is also presented in figure 7, and 
in figure 8 it is compared with the extent of the region where a princi- 
pal compressive stress exists in a plate subjected to the same loading. 
Except near the wrinkling torque the regions are quite different. 

It is 

It is of interest to determine the direction of the wrinkles. For 
polar coordinates, equations (2) become 

2 ur = u1 cos a 

ae = u1 sin 2 a 

= al sin a cos a Tre 

where here a is the angle wrinkles make with radial lines. For this 
problem, then, a is given by 

t a n a = - -  2 00 - M2 
or 4fi2t2c2r2 - M~ 

or 

M sin a = 
2xt @r 
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As illustrated in figure 6, the wrinkles are neither radial nor tangent 
to the hub. 

CONCLUDING REMARKS 

A theory has been derived for the representation of the structural 
The theory is based on the equilibrium behavior of wrinkled membranes. 

equations of the theory of elasticity but requires that one of the prin- 
cipal stresses vanish; the theory makes use of the usual strain- 
displacement relations but permits "over contraction" in the direction 
of the vanishing stress by replacing Poisson's ratio by an arbitrary 
function. Thus in the wrinkled region instead of examining deformations 
in detail, average deformations are obtained. The requirement that one 
of the principal stresses vanish introduces a nonlinear relation, but 
makes the wrinkled-membrane problem "statically determinate" so that 
stresses may be determined independently of displacements. A general 
solution may be written for stresses from which it can be proved that 
wrinkles in a flat membrane must be straight. 

Three basic problems have been solved which illustrate wrinkled- 
membrane behavior as represented by the theory. In particular, it is 
shown that membrane structures retain much of their stiffness at loads 
substantially above the load at which wrinkling first occurs. 

."- 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., April 10, 1961. 
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Figure 1.- Moment-curvature re la t ionship fo r  in-plane bending of a 
s t re tched rectangular membrane. 
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Figure 2.- Comparison of wrinkled region i n  s t re tched rectangular mem- 
brane subject t o  in-plane bending with compression region i n  rectan- 
gular p l a t e  with same loading. 
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L-61- 1342 
Figure 3.- Photograph of wrinkling of pressurized Mylar cylinder in 

bending. 
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Figure 4.- Moment-curvature relationship for the bending of a pressurized 
membrane cylinder. 
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Figure 5.- Comparison of wrinkled region in pressurized cylindrical mem- 
brane in bending with  compression region in cylindrical she l l  with 
same loading. 
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Figure 6.- Wrinkles due to rotation of a hub in a stretched circular 

Mylar sheet. 
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Figure 7.- Rotation due t o  the torque of a hub i n  a s t re tched  i n f i n i t e  
membrane ( v  = 1/31. 
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Figure 8.- Comparison of wrinkled region i n  s t re tched  i n f i n i t e  membrane 
having hub subject  t o  to r s ion  with region of compressive p r inc ipa l  
s t r e s s  i n  p l a t e  with same loading. 


